Data sheet for household cooker hoods In acc. with delegated regulation (EU) No. 65/2014 and regulation (EU) No. 66/2014 | inual Energy Consumption (AEC) EC _(pm) let (EC _(pm)) let (ED (EEL _(pm)) let (ED (EEL _(pm)) let (Dynamic Efficiency Class) let (Dynamic Efficiency Class) let (most efficient) to G (least efficient) let (ED ((EE _(pm))) let (Dynamic Efficiency Class) let (most efficient) to G (least efficient) let (EE _(pm)) let (Dynamic Efficiency Class) let (most efficient) to G (least efficient) let (EE _(pm)) let (Dynamic Efficiency Class) let (most efficient) to G (least efficient) Rease Filtering Efficiency (ass) let (most efficient) to G (least efficient) let (Dynamic Efficiency Class) let (most efficient) to G (least efficient) let (Dynamic Efficiency Class) let (most efficient) to G (least efficient) let (Dynamic Efficiency Class) let (most efficient) to G (least efficient) let (Dynamic Efficiency Class) let (most efficient) to G (least efficient) let (Dynamic Efficiency Class) let (most efficient) to G (least efficient) let (Dynamic Efficiency Class) | Miele | | | | | |--|---|---------|-------|--|--| | EC_pm) kWh/year 109,9 lergy efficiency class C lergy efficiency index (EEI) (EEI,pm) 79,7 led Dynamic Efficiency (FDE) (FDE_pm) 18,6 led Dynamic Efficiency class (most efficient) C lynting Efficiency class (most efficient) C lynting Efficiency class (most efficient) to G (least efficient) A ease Filtering Efficiency class (most efficient) to G (least efficient) C ease Filtering Efficiency (les) (LE,pm) M/N 42,9 ease Filtering Efficiency M/N 71,6 ease Filtering Efficiency class (most efficient) D flow at best efficienty to G (least efficient) D flow (min. speed) m ³ /h 400,8 r flow (min. speed) m ³ /h 220 r flow (min. speed) m ³ /h 710 r pressure at best efficiency point Pa 361 r borne acoustical A-weighted sound power emissions in: speed) dB 47 rborne acoustical A-weighted sound power emissions leav. speed) dB 69 ectrical power input at best efficiency point W 216,0 were consumption in off mode (P _o) W were consumption in standby mode (P _s) W 0,45 minal power of lighting system W 7,0 ereage illumination of the lighting system on the cooking frace w 12 minus process (page 10 minus process) can be set fighting system on the cooking frace w 12 minus process (page 10 minus process (page 10 minus process) can be set fighting system on the cooking frace w 12 minus process (page 10 minus process) can be set fighting system on the cooking frace w 12 minus process (page 10 (pa | Model name / identifier | | | | | | rergy efficiency class rergy efficiency index (EEI) (EEI,pm) rergy efficiency index (EEI) (EEI,pm) rergy efficiency (FDE) (FDE,pm) rid Dynamic Efficiency (Lass (most efficient) to G (least efficient) rid bynamic Efficiency class (most efficient) to G (least efficient) rid spring Efficiency class (most efficient) to G (least efficient) rease Filtering Efficiency reficiency rease Filtering Efficiency rease Filtering Efficiency rease Filtering Efficiency rease Filtering Efficiency rease Filtering reficiency reficiency reficiency reficiency reficiency rease Filtering reficiency refic | Annual Energy Consumption (AEC) | | | | | | tergy efficiency index (EEI) (EEI, pm) 79,7 and Dynamic Efficiency (FDE) (FDE, pm) 18,6 and Dynamic Efficiency Class (most efficient) to G (least efficient) C C phing Efficiency (LEI) (LE, pm) 12/W 42,9 and phing Efficiency Class (most efficient) to G (least efficient) A ease Filtering Efficiency Class (most efficient) A ease Filtering Efficiency Class (most efficient) D C (least efficient) A ease Filtering Efficiency Class (most efficient) D C (least efficient) D C (least efficient) D C (least efficient) D C (least efficient) P C (least efficiency point poi | (AEC _{rpm}) kW | /h/year | 109,9 | | | | tergy efficiency index (EEI) (EEI, pm) 79,7 and Dynamic Efficiency (FDE) (FDE, pm) 18,6 and Dynamic Efficiency Class (most efficient) to G (least efficient) C C phing Efficiency (LEI) (LE, pm) 12/W 42,9 and phing Efficiency Class (most efficient) to G (least efficient) A ease Filtering Efficiency Class (most efficient) A ease Filtering Efficiency Class (most efficient) D C (least efficient) A ease Filtering Efficiency Class (most efficient) D C (least efficient) D C (least efficient) D C (least efficient) D C (least efficient) P C (least efficiency point poi | nergy efficiency class | | С | | | | Lid Dynamic Efficiency (FDE) (FDE _{rpm}) Lid Dynamic Efficiency class (most efficient) to G (least efficient) Indirect efficiency (LE) (LE _{rpm}) Indirect efficiency (LE) (LE _{rpm}) Indirect ease Filtering Efficiency Ease Filtering Efficiency Ease Filtering Efficiency (LE) (LE _{rpm}) Ease Filtering Efficiency Efficiency Ease Filtering Eff | | | | | | | uid Dynamic Efficiency class (most efficient) to G (least efficient) phting Efficiency (LE) (LE _{rpm}) phting Efficiency class (most efficient) to G (least efficient) ease Filtering Efficiency ease Filtering Efficiency ease Filtering Efficiency flow at best efficient) efflow at best efficienty flow (min. speed) efflow s | | | , | | | | (most efficient) to G (least efficient) phting Efficiency (LE) (LE (pm)) phting Efficiency (LE) (LE (pm)) phting Efficiency class (most efficient) to G (least efficient) pease Filtering Efficiency pease Filtering Efficiency class (most efficient) to G (least efficient) pease Filtering Efficiency class (most efficient) to G (least efficient) pease Filtering Efficiency class (most efficient) to G (least efficient) pease Filtering Efficiency class (most efficient) to G (least efficient) pease Filtering Efficiency class (most efficient) to G (least efficient) pease Filtering Efficiency point photomato best efficiency point photomato speed) photomato speed) photomato photo | | | .0,0 | | | | shting Efficiency (LE) (LE _{rpm}) shting Efficiency class (most efficient) to G (least efficient) ease Filtering Efficiency ease Filtering Efficiency class (most efficient) to G (least efficient) ease Filtering Efficiency class (most efficient) to G (least efficient) D flow at best efficiency point r flow (min. speed) r flow (max. speed) r flow (max. speed) r flow (max. speed) r flow (intensive or boost setting) ax. air flow (Q) (Q _{max}) r pressure at best efficiency point r pressure at best efficiency point r pressure at best efficiency point r pressure acoustical A-weighted sound power emissions in: speed) r flow reacoustical A-weighted sound power emissions tax. speed) dB 60 60 60 60 60 60 60 60 60 6 | | | С | | | | whiting Efficiency class (most efficient) to G (least efficient) $^{\circ}$ % 71,6 rease Filtering Efficiency class (most efficient) to G (least efficient) $^{\circ}$ % 71,6 rease Filtering Efficiency class (most efficient) to G (least efficient) $^{\circ}$ D ribove at best efficiency point $^{\circ}$ $^{\circ}$ $^{\circ}$ $^{\circ}$ 400,8 ribove at best efficiency point $^{\circ}$ | ighting Efficiency (LE) (LE _{rom}) | lx/W | 42,9 | | | | A case Filtering Efficiency $\%$ 71,6 rease Filtering Efficiency $\%$ 71,6 rease Filtering Efficiency class (most efficient) to G (least efficient) $\%$ D (flow at best efficiency point $\%$ $\%$ $\%$ $\%$ $\%$ $\%$ $\%$ $\%$ $\%$ $\%$ | ighting Efficiency class | | , | | | | rease Filtering Efficiency class (most efficient) to G (least efficient) Thow at best efficiency point Thow (min. speed) Thow (min. speed) Thow (max. speed) Thow (max. speed) Thow (intensive or boost setting) Tho | (most efficient) to G (least efficient) | | Α | | | | (most efficient) to G (least efficient) flow at best efficiency point r flow (min. speed) r flow (max. speed) r flow (max. speed) r flow (intensive or boost setting) ax. air flow (Q) (Q _{max}) r flow (Q) (Q _{max}) r flow (intensive or boost setting) ax. air flow (Q) (Q _{max}) r flow (intensive or boost setting) ax. air flow (Q) (Q _{max}) r flow (air flow (Q) (Q _{max}) r flow (Q) (Q _{max}) r flow (Q) (Q _{max}) m³/h r flo r flow (Q) (Q _{max}) m³/h m³/h r flow (Q) (Q _{max} m³/h r flow (Q) (Q _{max} m³/h r flow (Q) (Q _{max} m³/h r flow (Q) (Q | Grease Filtering Efficiency | % | 71,6 | | | | Inflow at best efficiency point m^3/h 400,8 or flow (min. speed) m^3/h 220 or flow (max. speed) m^3/h 450 or flow (intensive or boost setting) m^3/h 710 or flow (intensive or boost setting) m^3/h 710 or pressure at best efficiency point $part = part $ | Grease Filtering Efficiency class | | | | | | If flow (min. speed) m^3/h 220 m^3/h 450 m^3/h 450 m^3/h 450 m^3/h 450 m^3/h 710 | (most efficient) to G (least efficient) | | D | | | | If flow (max. speed) m^3/h 450 If flow (intensive or boost setting) m^3/h 710 If flow (intensive or boost setting) m^3/h 710 If pressure at best efficiency point p_a 361 If thorne acoustical A-weighted sound power emissions lax. speed) p_a 48 47 Intensive or boost setting) p_a 48 60 Intensive or boost setting) p_a 49 49 40 setting In | rflow at best efficiency point | m³/h | 400,8 | | | | If flow (intensive or boost setting) m^3/h 710 ax. air flow (Q) (Q_{max}) m^3/h 710 repressure at best efficiency point Pa 361 rhorne acoustical A-weighted sound power emissions in. speed) dB 47 rhorne acoustical A-weighted sound power emissions ax. speed) dB 60 rhorne acoustical A-weighted sound power emissions tensive or boost setting) dB 69 ectrical power input at best efficiency point W 216,0 power consumption in standby mode (P_s) W 0,45 pointinal power of lighting system W 7,0 rerage illumination of the lighting system on the cooking rface $ x $ 300 | ir flow (min. speed) | m³/h | 220 | | | | ax. air flow (Q) (Q_{max}) m^3/h 710 r pressure at best efficiency point Pa 361 rborne acoustical A-weighted sound power emissions iin. speed) dB 47 rborne acoustical A-weighted sound power emissions iax. speed) dB 60 rborne acoustical A-weighted sound power emissions iax. speed) dB 60 rborne acoustical A-weighted sound power emissions tensive or boost setting) dB 69 ectrical power input at best efficiency point W 216,0 power consumption in off mode (P_o) W power consumption in standby mode (P_s) W 0,45 pominal power of lighting system W 7,0 rerage illumination of the lighting system on the cooking rface P_o $P_$ | ir flow (max. speed) | m³/h | 450 | | | | r pressure at best efficiency point Pa 361 rborne acoustical A-weighted sound power emissions (in. speed) dB 47 rborne acoustical A-weighted sound power emissions (ax. speed) dB 60 rborne acoustical A-weighted sound power emissions (ax. speed) dB 60 rborne acoustical A-weighted sound power emissions (tensive or boost setting) dB 69 ectrical power input at best efficiency point W 216,0 power consumption in off mode (P_0) W power consumption in standby mode (P_s) W 0,45 pominal power of lighting system W 7,0 prerage illumination of the lighting system on the cooking rface (P_s) N 300 | Air flow (intensive or boost setting) | m³/h | 710 | | | | Thorne acoustical A-weighted sound power emissions (in. speed) dB 47 (thorne acoustical A-weighted sound power emissions (ax. speed) dB 60 (thorne acoustical A-weighted sound power emissions (tensive or boost setting) dB 69 (extrical power input at best efficiency point 60 (axis of the sound power emissions) 60 (by the consumption in off mode 60 (Po) 60 (where consumption in standby mode 60 (Po) 60 (where consumption in standby mode 60 (Po) 60 (where 60 (Po) (Po | lax. air flow (Q) (Q _{max}) | m³/h | 710 | | | | inin. speed) dB 47 rborne acoustical A-weighted sound power emissions lax. speed) dB 60 rborne acoustical A-weighted sound power emissions tensive or boost setting) dB 69 ectrical power input at best efficiency point wer consumption in off mode (Po) wer consumption in standby mode (Ps) where m | ir pressure at best efficiency point | Pa | 361 | | | | rborne acoustical A-weighted sound power emissions lax. speed) dB 60 rborne acoustical A-weighted sound power emissions tensive or boost setting) dB 69 extrical power input at best efficiency point W $216,0$ ower consumption in off mode (P_0) W ower consumption in standby mode (P_s) W $0,45$ ominal power of lighting system W $7,0$ rerage illumination of the lighting system on the cooking rface $ x $ $ x $ $ x $ $ x $ | irborne acoustical A-weighted sound power emissions | | | | | | tax. speed) dB 60 rborne acoustical A-weighted sound power emissions tensive or boost setting) dB 69 extrical power input at best efficiency point W 216,0 wer consumption in off mode (P_0) W 0,45 wer consumption in standby mode (P_s) W 0,45 which is a speed of lighting system W 7,0 rerage illumination of the lighting system on the cooking rface $ x = 300$ | nin. speed) | dB | 47 | | | | rborne acoustical A-weighted sound power emissions stensive or boost setting) $ \begin{array}{cccccccccccccccccccccccccccccccccc$ | irborne acoustical A-weighted sound power emissions | | | | | | tensive or boost setting) dB 69 ectrical power input at best efficiency point W 216,0 were consumption in off mode (P_0) W $0,45$ where consumption in standby mode (P_s) W $0,45$ which is standby mode (P_s) W (P_s) W (P_s) W (P_s) W (P_s) were gillumination of the lighting system W (P_s) | nax. speed) | dB | 60 | | | | ectrical power input at best efficiency point W 216,0 over consumption in off mode (P_o) W over consumption in standby mode (P_s) W 0,45 ominal power of lighting system W 7,0 overage illumination of the lighting system on the cooking race W 300 | | | | | | | ower consumption in off mode (P_o) W ower consumption in standby mode (P_s) W 0,45 ominal power of lighting system W 7,0 overage illumination of the lighting system on the cooking oracle Ix 300 | ٥, | | | | | | ower consumption in standby mode (P_s) W 0,45 pminal power of lighting system W 7,0 perage illumination of the lighting system on the cooking race P_s | | | 216,0 | | | | ominal power of lighting system W 7,0 verage illumination of the lighting system on the cooking rface x 300 | | | 0.45 | | | | rerage illumination of the lighting system on the cooking rface lx 300 | | | | | | | rface lx 300 | | VV | 7,0 | | | | | | ly | 300 | | | | ne increase factor 1.3 | ime increase factor | IA. | 1,3 | | |